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ABSTRACT
SIMD parallelism has become an increasingly important
mechanism for delivering performance in modern CPUs, due
its power efficiency and relatively low cost in die area com-
pared to other forms of parallelism. Unfortunately, lan-
guages and compilers for CPUs have not kept up with the
hardware’s capabilities. Existing CPU parallel program-
ming models focus primarily on multi-core parallelism, ne-
glecting the substantial computational capabilities that are
available in CPU SIMD vector units. GPU-oriented lan-
guages like OpenCL support SIMD but lack capabilities
needed to achieve maximum efficiency on CPUs and suf-
fer from GPU-driven constraints that impair ease of use on
CPUs.

We have developed a compiler, the Intel R© SPMD Pro-
gram Compiler (ispc), that delivers very high performance
on CPUs thanks to effective use of both multiple processor
cores and SIMD vector units. ispc draws from GPU pro-
gramming languages, which have shown that for many ap-
plications the easiest way to program SIMD units is to use
a single-program, multiple-data (SPMD) model, with each
instance of the program mapped to one SIMD lane. We dis-
cuss language features that make ispc easy to adopt and
use productively with existing software systems and show
that ispc delivers up to 35x speedups on a 4-core system
and up to 240x speedups on a 40-core system for complex
workloads (compared to serial C++ code).

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Compil-
ers; D.1.3 [Concurrent programming]: Parallel program-
ming

Keywords
SPMD, parallel programming, SIMD, CPUs

1. INTRODUCTION
Recent work has shown that CPUs are capable of deliv-

ering high performance on a variety of highly parallel work-
loads by using both SIMD and multi-core parallelism [22].
Coupled with their ability to also efficiently execute code
with moderate to small amounts of parallelism, this makes
CPUs an attractive target for a range of computationally-
intensive applications, particularly those that exhibit vary-
ing amounts of parallelism over the course of their execution.

However, achieving this performance is difficult in prac-
tice; although techniques for parallelizing across CPU cores

are well-known and reasonably easily adopted, parallelizing
across SIMD vector lanes remains difficult, often requiring
laboriously writing intrinsics code to generate desired in-
struction sequences by hand. The most common parallel
programming languages and libraries designed for CPUs—
including OpenMP, MPI, Thread Building Blocks, UPC,
and Cilk—focus on multi-core parallelism and do not pro-
vide any assistance for targeting SIMD parallelism within
a core. There has been some hope that CPU implementa-
tions of GPU-oriented languages that support SIMD hard-
ware (such as OpenCL) might address this gap [10], but
OpenCL lacks capabilities needed to achieve maximum effi-
ciency on CPUs and imposes productivity penalties caused
by needing to accommodate GPU limitations such as a sep-
arate memory system. This situation led us to ask what
would be possible if one were to design a language specif-
ically for achieving high performance and productivity for
using SIMD vector units on modern CPUs.

We have implemented a language and compiler, the Intel R©
SPMD Program Compiler (ispc), that extends a C-based
language with “single program, multiple data” (SPMD) con-
structs for high-performance SIMD programming.1 ispc’s
“SPMD-on-SIMD” execution model provides the key feature
of being able to execute programs that have divergent con-
trol flow across the SIMD lanes. ispc’s main focus is effec-
tive use of CPU SIMD units, though it supports multi-core
parallelism as well.

The language and underlying programming model are de-
signed to fully expose the capabilities of modern CPU hard-
ware, while providing ease of use and high programmer pro-
ductivity. Programs written in ispc generally see their per-
formance scale with the product of both the number of pro-
cessing cores and their SIMD width; this is a standard char-
acteristic of GPU programming models but one that is much
less common on the CPU.

The most important features of ispc for performance are:

• Explicit language support for both scalar and SIMD
operations.

• Support for structure-of-arrays data structures, includ-
ing for converting previously-declared data types into
structure of arrays layout.

• Access to the full flexibility of the underlying CPU
hardware, including the ability to launch asynchronous
tasks and to perform fast cross-lane SIMD operations.

1ispc is available for download in both source and binary
form from http://ispc.github.com.



The most important features of ispc for usability are:

• Support for tight coupling between C++ and ispc,
including the ability to directly call ispc routines from
C++ and to also call C++ routines from ispc.2

• Coherent shared memory between C++ and ispc.

• Familiar syntax and language features due to its basis
in C.

Most ispc language features are inspired by earlier SIMD
languages such as C* [33], Pixar’s FLAP C [24], the Render-
Man Shading Language [11] and the MasPar programming
language [29], and in some cases by more modern GPU-
oriented languages such as CUDA [31] and OpenCL [19].
The primary contribution of this paper is to design and im-
plement a language and compiler targeted at modern CPU
architectures, and to evaluate the performance impact of key
language features on these architectures.

2. DESIGN GOALS
In order to motivate some of the design differences be-

tween ispc and other parallel languages, we will discuss the
specific goals of the system and the key characteristics of the
hardware that it targets.

2.1 Goals
Performance on today’s CPU hardware: The tar-

get users for ispc are performance-focused programmers.
Therefore, a key design goal is that the system should pro-
vide performance transparency: just as with C, it should be
straightforward for the user to understand how code writ-
ten in the language will be compiled to the hardware and
roughly how the code will perform. The target hardware is
modern CPU hardware, with SIMD units from four to six-
teen elements wide, and in particular x86 CPUs with SSE or
AVX instructions. A skilled user should be able to achieve
performance similar (85% or better) to that achievable by
programming in C with SSE and AVX intrinsic functions.
Modern x86 workstations have up to forty cores and the In-
tel MIC architecture will have over fifty cores on a single
chip, so ispc programs should be able to scale to these core
counts and beyond.

Programmer productivity: Programmer productivity
should be substantially higher than that achievable by pro-
gramming with intrinsic functions, and should be compa-
rable to that of writing high-performance serial C code or
OpenCL kernels. Productivity is measured not just in terms
of writing code, but also by the ease of reading and modify-
ing code. Of course, it is expected that it will take longer and
require more skill to write highly-tuned code than it does to
write less efficient code, just as when programming in other
languages. It should be possible (though not mandatory) to
write code that is portable across architectures with differing
SIMD widths.

Ease of adoption and interoperability: It should be
easy for programmers to adopt the language, both for new
code and for incremental enhancements to existing systems.
The language should be as familiar as possible so that it

2Here and throughout this paper, we use “C++ code” or
“application code” to indicate the rest of the software sys-
tem that ispc is being used with. This could include, for
example, Fortran or Python code that called ispc code.

is easy to learn. Ideally the language should be so similar
to C that porting code or sharing data structure definitions
between it and C/C++ is easy. To support incremental use
of the system, it should be easy to call back and forth be-
tween C/C++ and ispc code, and it should be easy to share
complex pointer-based data structures. Code generated by
the compiler should interoperate with existing memory al-
locators and task schedulers, rather than imposing its own.
Finally, the system should easily work with existing build
systems, debuggers and tools like memory verifiers (e.g. val-
grind). (Lua’s “embeddability” goals are similar [12].)

2.2 Non-goals
It is useful to specifically list several non-goals of ispc.
No support for GPUs: CPU and GPU architectures

are sufficiently different that a single performance-focused
programming model for both is unlikely to be an ideal fit
for either. Thus, we focus exclusively on CPU architec-
tures. For example, we assume a single cache-coherent ad-
dress space, which would not be possible if the language had
to support today’s discrete GPUs.

Don’t try to provide “safe” parallelism: we do not
attempt to protect the programmer by making races or dead-
lock difficult or impossible. Doing so would place too many
levels of abstraction between the programmer and the un-
derlying hardware, and we choose to focus on programmers
who are willing give up some safety in return for achieving
peak machine performance, just as they might do when they
choose C or C++ over Java.

2.3 Target Hardware
Since one of the primary goals of the ispc language is

to provide high efficiency on modern CPU hardware, it is
helpful to review some of the characteristics of this hardware
that impact the language and compiler design.

Multi-core and SIMD parallelism: A modern CPU
consists of several cores, each of which has a scalar unit
and a SIMD unit. The instructions for accessing the SIMD
unit have different names on different architectures: SSE for
128-bit wide SIMD on x86 processors, AVX for 256-bit wide
SIMD on Intel processors, AltiVec on PowerPC processors,
and Neon on ARM processors. The ispc compiler currently
supports SSE and AVX.

Simultaneous execution of scalar and SIMD in-
structions: Modern CPU architectures can issue multiple
instructions per cycle when appropriate execution units are
available for those instructions. There is often a performance
advantage from replacing a SIMD instruction with a scalar
instruction due to better occupancy of execution units. The
architects of the Pixar FLAP observed long ago that even
SIMD-heavy code has a large number of addressing and con-
trol computations that can be executed on a scalar unit [24].

One program counter per core: The scalar unit and
all lanes of the associated SIMD unit share a single hardware
program counter.

Single coherent memory: All cores share a single
cache-coherent address space and memory system for both
scalar and SIMD operations. This capability greatly simpli-
fies the sharing of data structures between serial and parallel
code. This capability is lacking on today’s GPUs.

Cross-lane SIMD operations: SSE and AVX effi-
ciently support various cross-lane SIMD operations such as
swizzles via a single instruction. GPUs generally provide



weaker support for these operations, although they can be
mimicked at lower performance via memory.

Tightly defined execution order and memory
model: Modern CPUs have relatively strict rules on the
order with which instructions are completed and the rules
for when memory stores become visible to memory loads.
GPUs have more relaxed rules, which provides greater free-
dom for hardware scheduling but makes it more difficult to
provide ordering guarantees at the language level.

3. PARALLELISM MODEL:
SPMD ON SIMD

Any language for parallel programming requires a concep-
tual model for expressing parallelism in the language and for
mapping this language-level parallelism to the underlying
hardware. For the following discussion of ispc’s approach,
we rely on Flynn’s taxonomy of programming models into
SIMD, MIMD, etc. [8], with Darema’s enhancement to in-
clude SPMD (Single Program Multiple Data) [7].

3.1 Why SPMD?
Recall that our goal is to design a language and compiler

for today’s SIMD CPU hardware. One option would be to
use a purely sequential language, such as unmodified C, and
rely on the compiler to find parallelism and map it to the
SIMD hardware. This approach is commonly referred to
as auto-vectorization [37]. Although auto-vectorization can
work well for regular code that lacks conditional operations,
a number of issues limit the applicability of the technique in
practice. All optimizations performed by an auto-vectorizer
must honor the original sequential semantics of the program;
the auto-vectorizer thus must have visibility into the entire
loop body, which precludes vectorizing loops that call out
to externally-defined functions, for example. Complex con-
trol flow and deeply nested function calls also often inhibit
auto-vectorization in practice, in part due to heuristics that
auto-vectorizers must apply to decide when to try to vec-
torize. As a result, auto-vectorization fails to provide good
performance transparency—it is difficult to know whether
a particular fragment of code will be successfully vectorized
by a given compiler and how it will perform.

To achieve ispc’s goals of efficiency and performance
transparency it is clear that the language must have par-
allel semantics. This leads to the question: how should
parallelism be expressed? The most obvious option is to
explicitly express SIMD operations as explicit vector com-
putations. This approach works acceptably in many cases
when the SIMD width is four or less, since explicit operations
on 3-vectors and 4-vectors are common in many algorithms.
For SIMD widths greater than four, this option is still ef-
fective for algorithms without data-dependent control flow,
and can be implemented in C++ using operator overload-
ing layered over intrinsics. However, this option becomes
less viable once complex control flow is required.

Given complex control flow, what the programmer ideally
wants is a programming model that is as close as possible to
MIMD, but that can be efficiently compiled to the available
SIMD hardware. SPMD provides just such a model: with
SPMD, there are multiple instances of a single program exe-
cuting concurrently and operating on different data. SPMD
programs largely look like scalar programs (unlike explicit
SIMD), which leads to a productivity advantage for pro-

grammers working with SPMD programs. Furthermore, the
SPMD approach aids with performance transparency: vec-
torization of a SPMD program is guaranteed by the under-
lying model, so a programmer can write SPMD code with
a clear mental model of how it will be compiled. Over the
past ten years the SPMD model has become widely used
on GPUs, first for programmable shading [28] and then for
more general-purpose computation via CUDA and OpenCL.
ispc implements SPMD execution on the SIMD vector

units of CPUs; we refer to this model as “SPMD-on-SIMD”.
Each instance of the program corresponds to a different
SIMD lane; conditionals and control flow that are different
between the program instances are allowed. As long as each
program instance operates only on its own data, it produces
the same results that would be obtained if it was running
on a dedicated MIMD processor. Figure 1 illustrates how
SPMD execution is implemented on CPU SIMD hardware.

3.2 Basic Execution Model
Upon entry to a ispc function called from C/C++ code,

the execution model switches from the application’s serial
model to ispc’s SPMD model. Conceptually, a number of
program instances start running concurrently. The group
of running program instances is a called a gang (harkening
to “gang scheduling”, since ispc provides certain guarantees
about when program instances running in a gang run con-
currently with other program instances in the gang, detailed
below.)3 The gang of program instances starts executing in
the same hardware thread and context as the application
code that called the ispc function; no thread creation or
implicit context switching is done by ispc.

The number of program instances in a gang is relatively
small; in practice, it’s no more than twice the SIMD width of
the hardware that it is executing on.4 Thus, there are four
or eight program instances in a gang on a CPU using the
4-wide SSE instruction set, and eight or sixteen on a CPU
using 8-wide AVX. The gang size is set at compile time.

SPMD parallelization across the SIMD lanes of a single
core is complementary to multi-core parallelism. For ex-
ample, if an application has already been parallelized across
cores, then threads in the application can independently call
functions written in ispc to use the SIMD unit on the core
where they are running. Alternatively, ispc has capabilities
for launching asynchronous tasks for multi-core parallelism;
they will be introduced in Section 5.4.

3.3 Mapping SPMD To Hardware: Control
One of the challenges in SPMD execution is handling di-

vergent control flow. Consider a while loop with a termi-
nation test n > 0; when different program instances have
different values for n, they will need to execute the loop
body different numbers of times.
ispc’s SPMD-on-SIMD model provides the illusion of sep-

arate control flow for each SIMD lane, but the burden of

3Program instances thus correspond to threads in CUDA
and work items in OpenCL. A gang roughly corresponds to
a CUDA warp.
4Running gangs wider than the SIMD width can give perfor-
mance benefits from amortizing shared computation (such as
scalar control flow overhead) over more program instances,
better cache reuse across the program instances, and from
more instruction-level parallelism being available. The costs
are greater register pressure and potentially more control
flow divergence across the program instances.



Figure 1: Execution of a 4-wide SPMD program on 4-wide SIMD vector hardware. On the left we have a
short program with simple control flow; the right illustrates how this program is compiled to run on SIMD
vector hardware. Here, the if statement has been converted into partially predicated instructions, so the
instructions for both the “true” and “false” cases are always executed. A mask is used to prevent side effects
for program instances that should not themselves be executing instructions in a particular control flow path.

supporting this illusion falls on the compiler. Control flow
constructs are compiled following the approach described
by Allen et al. [2] and recently generalized by Karrenberg et
al. [17], where control flow is transformed to data flow.

A simple example of this transformation is shown in Fig-
ure 1, where assignments to a variable are controlled by an
if statement. The SIMD code generated by this example
maintains a mask that indicates which program instances
are currently active during program execution. Operations
with side-effects are masked so that they don’t have any ef-
fect for program instances with an “off” mask value. This
approach is also applied to loops (including break and con-

tinue statements) and to multiple return statements within
one function.

Implementation of this transformation is complex on SSE
hardware due to limited support for SIMD write-masks, in
contrast to AVX, MIC and most GPUs. Instead, the com-
piler must use separate blend/select instructions designed
for this purpose. Fortunately, masking isn’t required for
all operations; it is unnecessary for most temporaries com-
puted when evaluating an expression, for example. Be-
cause the SPMD programming model is used pervasively
on GPUs, most GPUs have some hardware/ISA support
for SPMD control flow, thereby reducing the burden on the
compiler [25, 27].

3.4 SPMD and Synchronization
ispc provides stricter guarantees of execution convergence

than GPUs running SPMD programs do; these guarantees in
turn provide ease-of-use benefits to the programmer. ispc

specifically provides an important guarantee about the be-
havior of the program counter and execution mask: the ex-
ecution of program instances within a gang is maximally
converged. Maximal convergence means that if two program
instances follow the same control path, they are guaranteed
to execute each program statement concurrently. If two pro-
gram instances follow diverging control paths, it is guaran-
teed that they will re-converge at the earliest point in the
program where they could re-converge.5

In contrast, CUDA and OpenCL have much looser guar-

5This guarantee is not provided across gangs in different
threads; in that case, explicit synchronization must be used.

antees on execution order, requiring explicit barrier synchro-
nization among program instances with __syncthreads() or
barrier(), respectively, when there is communication be-
tween program instances via memory. Implementing these
barriers efficiently for OpenCL on CPUs is challenging [10].

Maximally converged execution provides several advan-
tages compared to the looser model on GPUs; it is partic-
ularly helpful for efficient communication of values between
program instances without needing to explicitly synchro-
nize among them. However, this property also can intro-
duce a dependency on SIMD width; by definition, ordering
changes if the gang size changes. The programmer generally
only needs to consider this issue when doing cross-program-
instance communication.

The concept of lockstep execution must be precisely de-
fined at the language level in order to write well-formed pro-
grams where program instances depend on values that are
written to memory by other program instances within their
gang. With ispc, any side effect from one program instance
is visible to other program instances in the gang after the
next sequence point in the program, where sequence points
are defined as in C. Generally, sequence points include the
end of a full expression, before a function is entered in a
function call, at function return, and at the end of initial-
izer expressions. The fact that there is no sequence point
between the increment of i and the assignment to i in i=i++

is why that expression yields undefined behavior in C, for ex-
ample. Similarly, if multiple program instances write to the
same location without an intervening sequence point, unde-
fined behavior results. (The ispc User’s Guide has further
details about these convergence guarantees and resulting im-
plications for language semantics [14].)

3.5 Mapping SPMD To Hardware: Memory
The loads and stores generated by SPMD execution can

present a performance challenge. Consider a simple array
indexing operation like a[index]: when executed in SPMD,
each of the program instances will in general have a different
value for index and thus access a different memory location.
Loads and stores of this type, corresponding to loads and
stores with SIMD vectors of pointers, are typically called
“gathers” and “scatters” respectively. It is frequently the
case at runtime that these accesses are to the same location



or to sequential locations in memory; we refer to this as
a coherent gather or scatter. For coherent gather/scatter,
modern DRAM typically delivers better performance from
a single memory transaction than a series of discrete memory
transactions.

Modern GPUs have memory controllers that coalesce co-
herent gathers and scatters into more efficient vector loads
and stores [25]. The range of cases that this hardware han-
dles has generally expanded over successive hardware gen-
erations. Current CPU hardware lacks “gather” and “scat-
ter” instructions; SSE and AVX only provide vector load
and store instructions for contiguous data. Therefore, when
gathers and scatters are required, they must be implemented
via a less-efficient series of scalar instructions.6 ispc’s tech-
niques for minimizing unnecessary gathers and scatters are
described in Section 6.4.

4. LANGUAGE OVERVIEW
To give a flavor of the syntax and how the language is used,

here is a simple example of using ispc. For more extensive
examples and language documentation, see the ispc online
documentation [13].

First, we have some setup code in C++ that dynamically
allocates and initializes two arrays. It then calls an update()

function.

float *values = new float[1024];

int *iterations = new int[1024];

// ... initialize values[], iterations[] ...

update(values, iterations, 1024);

The call to update() is a regular function call; in this
case it happens that update() is implemented in ispc. The
function squares each element in the values array the num-
ber of times indicated by the corresponding entry in the
iterations array.

export void update(uniform float values[],

uniform int iterations[],

uniform int num_values) {

for (int i = programIndex; i < num_values;

i += programCount) {

int iters = iterations[i];

while (iters-- > 0)

values[i] *= values[i];

}

}

The syntax and basic capabilities of ispc are based on
C (C89 [3], specifically), though it adopts a number of con-
structs from C99 and C++. (Examples include the abil-
ity to declare variables anywhere in a function, a built-in
bool type, references, and function overloading.) Matching
C’s syntax as closely as possible is an important aid to the
adoptability of the language.

The update() function has an export qualifier, which
indicates that it should be made callable from C++; the
uniform variable qualifier specifies scalar storage and com-
putation and will be described in Section 5.1.
ispc supports arbitrary structured control flow within

functions, including if statements, switch statements, for,

6This limitation will be removed in future hardware (The
Haswell New Instructions provide gather [15] and MIC pro-
vides both gather and scatter [35]).

while, and do loops, as well as break, continue, and return

statements in all of the places where they are allowed in
C.7 Different program instances can follow different control
paths; in the example above, the while loop may execute a
different number of times for different elements of the array.
ispc provides a standard library of useful functions, in-

cluding hardware atomic operations, transcendentals, func-
tions for communication between program instances, and
various data-parallel primitives such as reductions and scans
across the program instances.

4.1 Mapping Computation to Data
Given a number of instances of the program running in

SPMD (i.e. one gang), it’s necessary for the instances to
iterate over the input data (which is typically larger than
a gang). The example above does this using a for loop
and the built-in variables programIndex and programCount.
programCount gives the total number of instances running
(i.e. the gang size) and programIndex gives each program
instance an index from zero to programCount-1. Thus, in
the above, for each for loop iteration a programCount-sized
number of contiguous elements of the input arrays are pro-
cessed concurrently by the program instances.
ispc’s built-in programIndex variable is analogous to the

threadIdx variable in CUDA and to the get_global_id()

function in OpenCL, though a key difference is that in ispc,
looping over more than a gang’s worth of items to process
is implemented by the programmer as an in-language for or
foreach loop, while in those languages, the corresponding
iteration is effectively done by the hardware and runtime
thread scheduler outside of the user’s kernel code. Perform-
ing this mapping in user code gives the programmer more
control over the structure of the parallel computation.

4.2 Implementation
The ispc compiler uses flex and bison for tokenization and

parsing. The compiler front-end performs type-checking and
standard early optimizations such as constant folding before
transforming the program to the vector intermediate repre-
sentation of the LLVM toolkit [21]. LLVM then performs an
additional set of traditional optimizations. Next our custom
optimizations are applied, as discussed in Section 6. LLVM
then generates final assembly code.

It is reasonably easy to add support for new target instruc-
tion sets: most of the compiler is implemented in a fashion
that is target agnostic (e.g. “gathers” are issued generically
and only late in the compilation process are they trans-
formed to a target-specific operation).

5. DESIGN FEATURES
We’ll now describe some key features of ispc and how

they support the goals introduced in Section 2.

5.1 “Uniform” Datatypes
In a SPMD language like ispc, a declaration of a variable

like float x represents a variable with a separate storage
location (and thus, potentially different value) for each of
the program instances. However, some variables and their

7Unstructured control flow (i.e. goto statements) is more
difficult to support efficiently, though ispc does support
goto in cases where it can be statically determined that all
program instances will execute the goto.



associated computations do not need to be replicated across
program instances. For example, address computations and
loop iteration variables can often be shared.

Since CPU hardware provides separate scalar compu-
tation units, it is important to be able to express non-
replicated storage and computation in the language. ispc

provides a uniform storage class for this purpose, which cor-
responds to a single value in memory and thus, a value that
is the same across all elements. In addition to the obvious
direct benefits, the use of uniform variables facilitates ad-
ditional optimizations as discussed in Section 6.1. It is a
compile-time error to assign a non-uniform (i.e., “varying”)
value to a uniform variable.

In the absence of the uniform storage class, an optimiz-
ing compiler could convert varying variables into uniform
variables when appropriate. (For example, in OpenCL or
CUDA, all kernel parameters are effectively uniform and
only variables that have values that are derived from the
thread index are varying.) However, there are a number of
reasons why having uniform as an explicit property of types
in the language is important:

• Interoperability with C/C++ data structures:
uniform is necessary to explicitly declare in-memory
variables of just a single element, as is common in
C/C++.

• Performance transparency: Treating uniform as
an optimization rather than an explicit type property
would make it difficult for the programmer to rea-
son about performance. A small change to a program
could inadvertently inhibit the optimization elsewhere
resulting in significant and difficult-to-understand per-
formance regressions.

• Support for separate compilation: Optimizations
cannot cross separate-compilation boundaries, so at a
minimum it must be possible to define a formal func-
tion parameter as uniform. But to guarantee that a
call to such a function with a variable as an actual pa-
rameter is legal, uniform must be an explicit part of
the type system. Otherwise, the legality of the func-
tion call would depend on the optimizer’s behavior for
the variable.

There is a downside to distinguishing between uniform and
varying types in the type system: with separately compiled
libraries of functions, to provide optimum performance it
may be necessary to have multiple variants of functions that
take different combinations of uniform and varying parame-
ters.

The uniform and varying keywords were first used in
the RenderMan shading language [11], but a similar dis-
tinction was made even earlier in general-purpose SIMD lan-
guages. To designate a SIMD variable, C* uses poly; Pixar’s
FLAP-C uses parallel; and MPL uses plural. CUDA and
OpenCL do not provide this distinction; all variables are
semantically varying in those languages.

5.2 Support For SOA Layout
It is well known that the standard C/C++ layout in mem-

ory for an “array of structures” (AOS) leads to sub-optimal
performance for SIMD code. The top third of Figure 2 illus-
trates the issue using a simple structure, which corresponds
to the ispc code below:

x0 y0 z0 x1 y1 z1 x2 y2 z2 x3 y3 z3

float v = a[index].x

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3

float v = a.x[index]

AOS

short SOA

...

x0 x1 x2 x3 y0 y1 y2 y3 z0 z1 z2 z3hybrid SOA x4 x5 ...

float v = a[index / 4].x[index & 3]

Figure 2: “Array of structures” layout (top), “hy-
brid structure of arrays” layout (middle), and “short
structure of arrays” layout (bottom) of the example
structure from Section 5.2. Reading data in an AOS
layout generally leads to expensive gather instruc-
tions, while the SOA layouts lead to efficient vector
load instructions.

struct Foo { float x, y, z; };

uniform Foo a[...] = { ... };

int index = ...;

float x = a[index].x;

Even if program instances access the elements of contigu-
ous structures (i.e. the values of index are sequential over
the program instances), the locations accessed are strided in
memory and performance suffers from gathers (Section 3.5).

A better performing in-memory layout is “hybrid struc-
ture of arrays” (hybrid SOA layout), where the structure
members are widened to be short arrays. On a system with
a 4-wide vector unit, one might instead use the following
struct declaration and access code:

struct Foo4 { float x[4], y[4], z[4]; };

uniform Foo4 a[...] = { ... };

int index = ...;

float x = a[index / 4].x[index & 3]

The corresponding memory layout is shown in the middle
third of Figure 2. In many cases, accessing structure ele-
ments in hybrid SOA layout can be done with efficient vector
load and store instructions.

The above syntax for declaring hybrid SOA layout and
accessing hybrid SOA data is awkward and unnecessarily
verbose; each element of Foo4 has the same array width re-
peated in its declaration. If we want both SOA and AOS
versions of the struct, we would have to declare two structs
with different types, which is undesirable. Furthermore, ac-
cessing elements of the structure is much more unwieldy to
express than in the AOS case.
ispc addresses these problems and encourages more effi-

cient hybrid SOA data layout by introducing a keyword soa,
which modifies existing types to be laid out in SOA format.
The soa qualifier converts primitive types (e.g. float or int)
to fixed-sized arrays of that type, while for nested data struc-
tures or arrays, soa propagates downward through the data



structure until it reaches a primitive type. Traditional ar-
ray indexing syntax is used for indexing into hybrid SOA
data, while the code generated by the compiler actually im-
plements the two-stage indexing calculation. Thus, use of
the more efficient hybrid SOA layout can be expressed as
follows in ispc:

struct Foo { float x, y, z; };

soa<4> struct Foo a[...] = { ... };

int index = ...;

float x = a[index].x;

Other than the soa<4> keyword, the code looks just like
what one would write for an AOS layout, yet it delivers all
of the performance benefits of hybrid SOA. As far as we
know, these SOA capabilities have not been provided before
in a general-purpose C-like language.

SOA layout also improves the performance of accesses to
variables used by each program instance in a gang. We refer
to this layout as a “short SOA layout” and illustrate it in
the bottom of Figure 2. In the SPMD programming model,
such variables should “look” scalar when they are used in ex-
pressions, so the indexing of such variables by programIndex

should be implicit. Note that CUDA and OpenCL achieve
similar behavior by storing such variables in a separate per-
lane memory space. The keyword varying produces the de-
sired behavior in ispc: it causes a structure to be widened to
the gang size and to be implicitly indexed by programIndex.
In the code below, after the expensive AOS structure loads
have been performed by the indexing operation, the elements
of fv are laid out contiguously in memory and so can be ac-
cessed efficiently.

uniform struct Foo a[...] = {...};

int index = ...;

varying Foo fv = a[index];

// now e.g. fv.x is contiguous in memory

fv.x = fv.y + fv.z; // looks scalar

varying structures of this form are also available in the Vec-
Imp and IVL languages designed concurrently to ispc [23].

The ability to conveniently but explicitly declare and ac-
cess hybrid SOA and short SOA data structures is one of
the major advantages of ispc over OpenCL when target-
ing CPU hardware. Note that languages that do not define
memory layout as strictly as C/C++ (and hence, typically
forbid pointers or restrict pointer arithmetic) may choose
to optimize layout to SOA form even when the declaration
appears to be AOS. For languages with strict layout rules,
the compiler may still optimize layout to SOA form if it
can guarantee that pointers are never used to access the
data. However, these approaches provide less performance
transparency than ispc’s approach and cannot be used for
zero-copy data structures that are shared with the C/C++
application.

5.3 Full C Pointer Model
ispc generalizes the full set of C pointer operations to

SPMD, including both uniform and varying pointers, point-
ers to pointers, and function pointers. This feature is im-
portant for the expressability of algorithms that use complex
pointer-based data structures in ispc and is also critical for
allowing ispc programs to interoperate with existing appli-
cation data structures. Often the code that builds these
data structures is not performance-critical and can be left

in C/C++, while the performance-critical portions of the
application that read or update the data structure can be
rewritten in ispc.

The distinction between uniform and varying data exists
for both the pointer itself and for the data that is pointed
to. (MasPar’s C extensions make a similar distinction [29].)
Thus, there are four kinds of pointers:

uniform float * uniform x;

varying float * uniform x;

uniform float * varying x;

varying float * varying x;

The first two declarations above are uniform pointers; the
first is to uniform data and the second is to varying data.
Both are thus represented as single scalar pointers. The
second two declarations are varying pointers, representing
a separate pointer for each program instance. Because all
variables and dynamically allocated storage reside in a single
coherent address space, any pointer can point to any data
of the appropriate underlying type in memory.

In OpenCL and CUDA, all locally-declared pointers are in
effect varying pointers to data, with additional limitations
imposed by the fragmented memory architecture. CUDA
supports function pointers and pointers to pointers, whereas
OpenCL does not support function pointers and only sup-
ports certain cases of pointers to pointers.

5.4 Task Launch
In order to make it easy to fill multiple CPU cores with

computation, ispc provides an asynchronous task launch
mechanism, closely modeled on the “spawn” facility pro-
vided by Cilk [4]. ispc functions called in this manner are
semantically asynchronous function calls that may run con-
currently in different hardware threads than the function
that launched them. This capability makes multi-core par-
allelization of ispc programs straightforward when indepen-
dent computation is available; generally just a few lines of
additional code are needed to use this construct.

Any complex multi-core C++ application typically has
its own task system or thread pool, which may be custom
designed or may be an existing one such as Microsoft’s Con-
currency Runtime, or Intel Thread Building Blocks. To in-
teroperate with the application’s task system, ispc allows
the user to provide a callback to a task enqueue function,
and then uses this callback to enqueue asynchronous tasks.

As in Cilk, all tasks launched from an ispc function
must have returned before the function is allowed to return.
This characteristic ensures parallel composability by free-
ing callers of functions from having to be aware of whether
tasks are still executing (or yet to be executed) from func-
tions they called. ispc also provides an explicit built-in
sync construct that waits for tasks launched earlier in the
function to complete.

Current GPU programming languages have no support
for task launch from the GPU, although it is possible to
implement a task system in “user space” in CUDA [1].

5.5 Cross-lane operations
One strength of SIMD capabilities on CPUs is the rich

set of fast cross-lane operations. For example, there are
instructions for broadcasting a value from one lane to all
other lanes, and instructions for permuting values between
lanes. ispc exposes these capabilities through built-in func-



tions that allow the program instances in a gang to exchange
data. These operations are particularly lightweight thanks
to the gang convergence guarantees described in Section 3.4.

5.6 Coherent Control Flow Hints
As described in Section 3.3, divergent control flow requires

extra instructions on CPU hardware compared to regular
control flow. In many uses of control flow, the common case
is that all program instances follow the same control path.
If the compiler had a way to know this, it could perform
a number of optimizations, which are introduced in Sec-
tion 6.5. ispc provides language constructs to express the
programmer’s expectation that control flow will typically be
converged at a given point in the program. For each control
flow construct, there is a corresponding “coherent” variant
with the character “c” prepended to it. The following code
shows cif in use:

float x = ...;

cif (x < 0) {

// handle negative x

}

These coherent control flow variants do not affect program
correctness or the final results computed, but can potentially
lead to higher performance.

For similar reasons, ispc provides convenience foreach

constructs that loop over arrays of one or more dimensions
and automatically set the execution mask at boundaries.
These constructs allow the ispc compiler to easily produce
optimized code for the subset of iterations that completely
fill a gang of program instances (see Section 6.6 for a de-
scription of these optimizations).

5.7 Native Object Files and Function Calls
The ispc compiler generates native object files that can be

linked into the application binary in the same way that other
object files are. ispc code can be split into multiple object
files if desired, with function calls between them resolved
at link time. Standard debugging information is optionally
included. These capabilities allow standard debuggers and
disassemblers to be used with ispc programs and make it
easy to add ispc code to existing build systems.
ispc’s calling conventions are based on the platform’s

standard ABI, though functions not marked export are aug-
mented with an additional parameter to provide the current
execution mask. Functions that are marked export can be
called with a regular function call from C or C++; calling a
ispc function is thus a lightweight operation—it’s the same
as the overhead of calling to an externally-defined C or C++
function. In particular, no data copying or reformatting
is performed, other than than possibly pushing parameters
onto the stack if required by the platform ABI. While there
are some circumstances where such reformatting could lead
to improved performance, introducing such a layer is against
our goals of performance transparency.

Lightweight function calls are a significant difference from
OpenCL on the CPU, where an API call to a driver must be
made in order to launch a kernel and where additional API
calls are required to set each kernel parameter value.

6. EFFICIENT SPMD-ON-SIMD
There are a number of specialized optimizations that ispc

applies to generate efficient code for SPMD on CPUs. We

will show how the features introduced in Section 5 make
a number of these optimizations possible. We focus on the
optimizations that are unique to SPMD-on-SIMD; ispc also
applies a standard set of traditional optimizations (constant
folding, inlining, etc).

6.1 Benefits of “Uniform”
Having scalar uniform data types, as introduced in Sec-

tion 5.1, provides a number of benefits compared to always
having a separate per-program-instance storage location for
each variable in the program:

• It reduces the total amount of in-memory storage used
for data, which in turn can lead to better cache per-
formance.

• Less bandwidth is consumed when reading and writing
scalar values to memory.

• CPUs have separate register sets for scalar and vector
values; storing values in scalar registers when possible
reduces pressure on vector registers.

• CPUs can co-issue scalar and vector instructions, so
that scalar and vector computations can happen con-
currently.

• In the usual case of using 64-bit pointers, pointer arith-
metic (e.g. for addressing calculations) is more efficient
for scalar pointers than for vector pointers.

• Dereferencing a uniform pointer (or using a uniform
value to index into an array) corresponds to a single
scalar or vector memory access, rather than a general
gather or scatter.

• Code for control flow based on uniform quantities can
be more efficient than code for control flow based on
non-uniform quantities (Section 6.2).

For the workloads we use for evaluation in Section 7, if all
uses of the uniform qualifier were removed thus eliminat-
ing all of the above benefits, the workloads ran at geomet-
ric mean (geomean) 0.45x the speed of when uniform was
present. The ray tracer was hardest hit, running at 0.05x of
its previous performance, “aobench” ran at 0.36x its original
performance without uniform and “stencil” at 0.21x.

There were multiple causes of these substantial perfor-
mance reductions without uniform; the most significant were
the higher overhead of non-uniform control flow and the
much greater expense of varying pointer operations com-
pared to uniform pointer operations. Increased pressure on
the vector registers which in turn led to more register spills
to memory also impacted performance without uniform.

6.2 Uniform Control Flow
When a control flow test is based on a uniform quantity,

all program instances will follow the same path at that point
in a function. Therefore, the compiler is able to generate reg-
ular jump instructions for control flow in this case, avoiding
the costs of mask updates and overhead for handling control
flow divergence.

Treating all uniform control flow statements as varying
caused the example workloads to run with performance ge-
omean 0.91x as fast as when this optimization was enabled.
This optimization had roughly similar effectiveness on all of



the workloads, though the ray tracer was particularly hard-
hit without it, running 0.65x as fast as it did without this
optimization.

6.3 Benefits of SOA
We measured the benefits of SOA versus AOS layout with

a workload based on a collision detection algorithm that
computed collision points, when present, between two groups
of spheres. We implemented this workload with AOS lay-
out and then modified the implementation to also use SOA.
By avoiding the gathers required with AOS layout, the SOA
version was 1.25x faster than the AOS one.

6.4 Coherent Memory Access
After conventional compiler optimizations have been ap-

plied, it’s often possible to detect additional cases where
the program instances are actually accessing memory coher-
ently [17]. The ispc compiler performs an additional opti-
mization pass late in compilation that detects cases where
all the instances, even if using “varying” indexing or point-
ers, are actually accessing the same location or consecutive
locations.

When this optimization was disabled for the example
workloads, performance was geomean 0.79x slower than
when it is enabled. This optimization had a significant effect
on the “stencil” workload, which ran 0.23x as fast when it
was disabled.

6.5 Dynamic Control Flow Coherence
Recall from Section 3.3 that control flow is generally trans-

formed by the compiler to data flow with masking, so that
for example both the “if” and “else” clauses of an if state-
ment are executed. In many such cases, the executing pro-
gram instances will actually follow a converged control-flow
path at runtime; for example, only the “else” clause might
be actually needed. The code generated by the compiler
can check for this case at points in the program where con-
trol flow could diverge. When it actually does not diverge,
a more efficient code path can be followed. Performing this
check can be especially helpful to performance for code paths
that are rarely executed (corner case handling, etc.)

The ispc compiler uses the “coherent” control flow state-
ments described in Section 5.6 to indicate when these addi-
tional tests should be performed. Performing this check for
dynamic convergence at runtime gives two main advantages.

• It makes it possible to avoid executing instructions
when the mask is “all off” and to jump over them.

• It gives an opportunity for dynamically reestablishing
that the mask is “all on” and then taking a specialized
code path for that case; the advantages of doing so are
discussed in the following subsection.

Disabling the the coherent control flow statements caused
the example workloads to run at geomean 0.85x their perfor-
mance of when it is enabled. This optimization was particu-
larly important for “aobench”, which ran at 0.33x of regular
performance without it. For the workloads that only have
“uniform” control flow (e.g. Black-Scholes), disabling this
optimization had no effect.

6.6 All On Mask
When it can be determined (statically or dynamically)

that all of the program instances in a gang are executing

Sec. Optimization Perf. when
disabled

6.1, 6.2 Uniform data & control flow 0.45x
6.2 Uniform control flow 0.91x
6.4 Gather/scatter improvements 0.79x
6.5 Coherent control flow 0.85x
6.6 “All on” mask improvements 0.73x

Table 1: Effect of individually disabling various op-
timizations (geometric mean over all of the example
workloads)

at a point in the program, there are additional optimization
opportunities. For example, scatters need to be “scalarized”
on current CPUs; they are turned into a scalar store for
each currently-executing program instance. In the general
case, this scalarization requires a conditional test for each
program instance before the corresponding store instruction.
If all program instances are known to be executing, however,
the per-lane mask check can be omitted.

There is furthermore some benefit to turning masked loads
and stores to regular loads and stores even on systems
that support masked memory instructions natively when the
mask is known to be all on. Doing so can in turn allow
those memory operations to be emitted as direct memory
operands to instructions without needing to be first loaded
into registers.

Disabling all of the optimizations that take advantage of
statically determining that the execution mask is all on led
to geomean 0.73x the performance of when it was enabled.

7. RESULTS
We have measured performance of a variety of workloads

written in ispc, comparing to serial, non-SIMD C++ im-
plementations of the same algorithms. Both the C++ and
ispc implementations received equivalent amounts of per-
formance tuning. (In general, the ispc and C++ imple-
mentations are syntactically very similar.)

These workloads are all included in the open-source ispc

distribution. They include two options pricing workloads,
a third-order stencil computation, a ray tracer, a volume
renderer, Mandelbrot set computation, and “aobench”, a
Monte Carlo rendering benchmark [9]. Most of these are not
suitable for conventional auto-vectorization, due to complex
data-dependent control flow and program complexity.

For the results reported here, we did a number of runs
of each workload, reporting the minimum time. The results
were within a few percent over each run. Other than the re-
sults on a 40-core system, results were measured on a 4-core
Apple iMac with a 4-core 3.4GHz Intel R© Core-i7 processor
using the AVX instruction set. The basis for comparison is
a reference C++ implementation compiled with a version of
the clang compiler built using the same version of the LLVM
libraries that are used by ispc.8 Thus, the results should
generally indicate the performance due to more effective use
of the vector unit rather than differences in implementation
of traditional compiler optimizations or code generation.

We have not performed direct comparisons between ispc

and CPU OpenCL implementations in these evaluations; it

8We have also tested with various versions of gcc with es-
sentially the same results.



Workload 1 core / 4 cores /
1 thread 8 threads

aobench 5.58x 26.26x
Binomial Options 4.39x 18.63x
Black-Scholes 7.43x 26.69x
Mandelbrot Set 5.85x 24.67x
Ray Tracer 6.85x 34.82x
Stencil 3.37x 12.03x
Volume Rendering 3.24x 15.92x

Table 2: Speedup of various workloads on a single
core and on four cores of a system with 8-wide SIMD
units, compared to a serial C++ implementation.
The one core speedup shows the benefit from using
the SIMD lanes of a single core efficiently, while the
four core speedup shows the benefit from filling the
entire processor with useful computation.

would be hard to interpret the results in that the effects of
different compiler optimizations and code generators would
be confounded with the effects of the impact of the lan-
guage designs. Instead, we have focused on evaluating the
performance benefit of various ispc features by disabling
them individually, thus isolating the effect of the factor un-
der evaluation.

Table 1 recaps the effects of the various compiler opti-
mizations that were reported in Section 6.

7.1 Speedup Compared to Serial Code
Table 2 shows speedups due to ispc’s effective use of

SIMD hardware and due to ispc’s use of task parallelism
on a 4-core system. The table compares three cases for
each workload: a serial non-SIMD C++ implementation;
an ispc implementation running in a single hardware thread
on a single core of the system; and an ispc implementation
running eight threads on the four two-way hyper-threaded
cores of the system. The four core performance shows the
result of filling the entire processor with computation via
both task-parallelism and SPMD. For the four-core results,
the workloads were parallelized over cores using the tasking
functionality described in Section 5.4.

7.2 Speedup Versus Intrinsics
The complexity of the example workloads (which are as

much as 700 lines of ispc code) makes it impractical to also
implement intrinsics-based versions of them for performance
comparisons. However, a number of users of the system have
implemented computations in ispc after previously imple-
menting the same computation with intrinsics and seen good
results—the examples we’ve seen are an image downsam-
pling kernel (ispc performance 0.99x of intrinsics), a colli-
sion detection computation (ispc 1.05x faster), a particle
system rasterizer (ispc 1.01x faster).

7.3 Speedup with wider vectors
We compared the performance of compiling the example

workloads to use four-wide SSE vector instructions versus
eight-wide AVX on a system that supported both instruction
sets. No changes were made to the workloads’ ispc source
code. The geometric mean of the speedup for the workloads
when going from SSE to AVX was 1.42x. Though this is not
as good as the potential 2x speedup from the doubling of

Workload 40 cores /
80 threads

aobench 182.36x
Binomial Options 63.85x
Black-Scholes 83.97x
Mandelbrot Set 76.48x
Ray Tracer 195.67x
Stencil 9.40x
Volume Rendering 243.18x

Table 3: Speedup versus serial C++ implementa-
tions of various workloads on a 40-core system with
4-wide SIMD units.

vector width, there are a number of microarchitectural de-
tails in the first generation of AVX systems that inhibit ideal
speedups; they include the fact that the integer vector units
are still only four-wide, as well as the fact that cache write
bandwidth was not doubled to keep up with the widening of
the vector registers.

7.4 Scalability on Larger Systems
Table 3 shows the result of running the example work-

loads with 80 threads on a 2-way hyper-threaded 40-core
Intel R© Xeon E7-8870 system at 2.40GHz, using the SSE4
instruction set and running Microsoft Windows Server 2008
Enterprise. For these tests, the serial C/C++ baseline code
was compiled with MSVC 2010. No changes were made to
the implementation of workloads after their initial paral-
lelization, though the “aobench” and options pricing work-
loads were run with larger data sets than the four-core runs
(2048x2048 image resolution versus 512x512, and 2M op-
tions versus 128k options, respectively).

The results fall into three categories: some (aobench, ray
tracer, and volume rendering), saw substantial speedups ver-
sus the serial baseline, thanks to effective use of all of the sys-
tem’s computational resources, achieving speedups of more
than the theoretically-ideal 160x (the product of number of
cores and SIMD width on each core); again, the super-linear
component of the speedups is mostly due to hyper-threading.
Other workloads (both of the options pricing workloads and
the Mandelbrot set workload), saw speedups around 2x the
system’s core count; for these, the MSVC compiler seems
to have been somewhat effective at automatically vectoriz-
ing them, thus improving the serial baseline performance.
Note, however, that these are the simplest of the workloads;
for the more complex workloads the auto-vectorizer is much
less effective.

The stencil computation saw a poor speedup versus the
serial baseline (and indeed, a worse speedup than on a four-
core system.) The main issue is that the computation is iter-
ative, requiring that each set of asynchronous tasks complete
before the set of tasks for the next iteration can be launched;
the repeated ramp up and ramp down of parallel computa-
tion hurts scalability. Improvements to the implementation
of the underlying task system could presumably reduce the
impact of this issue.

7.5 Users
There have been over 1,500 downloads of the ispc binaries

since the system was first released; we don’t know how many
additional users are building the system from source. Users



have reported roughly fifty bugs and made a number of sug-
gestions for improvements to code generation and language
syntax and capabilities.

Overall feedback from users has been positive, both from
users with a background in SPMD programming from GPUs
but also from users with extensive background in intrin-
sics programming. Their experience has generally been that
ispc’s interoperability features and close relationship to C
has made it easy to adopt the system; users can port existing
code to ispc by starting with existing C/C++ code, updat-
ing it to remove any constructs that ispc doesn’t support
(like classes), and then modifying it to use ispc’s parallel
constructs. It hasn’t been unusual for a user with a bit of
ispc experience to port an existing 500–1000 line program
from C++ to ispc in a morning’s work. From the other
direction, many ispc programs can be compiled as C with
the introduction of a few preprocessor definitions; being able
to go back to serial C with the same source code has been
useful for a number of users as well.

Applications that users have reported using ispc for in-
clude implementing a 2D Jacobi Poisson solver (achieving
a 3.60x speedup compared to the previous implementation,
both on a single core); implementing a variety of image pro-
cessing operations for a production imaging system (achiev-
ing a 3.2x speedup, again both on single core); and im-
plementing physical simulation of airflow for aircraft design
(speedups not reported to us). Most of these users had not
previously bothered to try to vectorize their workloads with
intrinsics, but have been able to see substantial speedups
using ispc; they have generally been quite happy with both
performance transparency and absolute performance.

8. RELATED WORK
The challenge of providing language and compiler sup-

port for parallel programming has received considerable at-
tention over many years. To keep the discussion of related
work tractable, we focus on languages whose goal is high
performance (or more precisely, high efficiency) program-
ming of SIMD hardware. We further focus on general pur-
pose languages (in contrast to domain-specific languages)
with a particular emphasis on languages that are C-like. We
do not discuss languages and libraries that are focused just
on multi-core or distributed parallelism, such as OpenMP,
TBB, Cilk, MPI, etc. even though some of these languages
use an SPMD programming model.

8.1 Historical systems
In the late 1980s and early 1990s, there was a wave of in-

terest in SIMD architectures and accompanying languages.
In all of the cases we discuss, SIMD computations were sup-
ported with a true superset of C; that is, serial C code could
always be compiled, but the SIMD hardware was accessible
via language extensions. The Pixar FLAP computer had a
scalar integer ALU and 4-wide SIMD floating-point ALU,
with an accompanying extended-C language [24]. FLAP is
also notable for providing hardware support for SIMD mask
operations, like the MIC ISA and some modern GPUs. The
Thinking Machines CM-1 and CM-2 and the MasPar MP-1
and MP-2 supercomputers used very wide SIMD (1000s of
ALUs), programmed in the extended-C languages C* [33]
and MPL [29] respectively.

All of these systems used a single language for both serial
and parallel computations; had a single hardware program

counter; and provided keywords similar to ispc’s uniform

and varying to distinguish between scalar and SIMD vari-
ables. MPL provided vector control constructs with syntax
similar to ispc, OpenCL, and CUDA; C* provided a more
limited capability just for if statements. MPL provided
generalized SIMD pointers similar to the ones in ispc, but
each SIMD ALU and the scalar ALU had its own memory
so these pointers could not be used to communicate data
between units as they can in ispc. Both C* and MPL had
sophisticated communication primitives for explicitly mov-
ing data between SIMD ALUs.

Clearspeed’s Cn is a more recent example of this family
of languages; the paper describing it has a good discussion
of design trade-offs [26].

8.2 Contemporary systems
CUDA is a SPMD language for NVIDIA GPUs [31] and

OpenCL is a similar language developed as an open stan-
dard, with some enhancements such as API-level task paral-
lelism designed to make it usable for CPUs as well as GPUs
[10, 19, 34]. At a high level, the most important differences
between these languages and ispc are that ispc’s design was
not restricted by GPU constraints such as a separate mem-
ory system, and that ispc includes numerous features de-
signed specifically to provide efficient performance on CPUs.
All three languages are C-like but do not support all features
of C. ispc and CUDA have some C++ features as well.

The difference in hardware focus between CUDA/OpenCL
and ispc drives many specific differences. OpenCL has
several different address spaces, including a per-SIMD-lane
memory address space (called “private”), and a per-work-
group address space (called “local”) whereas ispc has a sin-
gle global coherent address space for all storage. OpenCL
and CUDA also have complex APIs for moving data to and
from a discrete graphics card that are unnecessary in ispc.
ispc has language-level support for task parallelism, unlike
OpenCL and CUDA. CUDA and OpenCL lack ispc’s sup-
port for “uniform” variables and convenient declaration of
structure of arrays data types. Although these features are
less important for performance on GPUs than on CPUs, we
believe they would provide some benefit even on GPUs.

There are several implementations of CUDA and OpenCL
for CPUs. Some do not attempt to vectorize across SIMD
lanes in the presence of control flow [10, 36]. Intel’s OpenCL
compiler does perform SIMD vectorization [34], using an
approach related to Karrenberg et al.’s [17] (who also applied
their technique to OpenCL kernels.)

Parker et al.’s RTSL system provided SPMD-on-SIMD on
current CPUs in a domain-specific language for implement-
ing ray tracers [32].

Microsoft’s C++ AMP [30] provides a set of extensions
to C++ to support GPU programming. As with CUDA
and OpenCL, its design was constrained by the goal of run-
ning on today’s GPUs. It is syntactically very different from
CUDA, OpenCL, and ispc because of its choice of mecha-
nisms for extending C++.

The UPC language extends C to provide an SPMD pro-
gramming model for multiple cores [5]. UPC includes mech-
anisms for scaling to very large systems that lack hardware
memory coherence, but the language was not designed to
target SIMD parallelism within a core and as far as we know
it has never been used for this purpose.



8.3 Concurrently-developed systems
The IVL and VecImp languages described in a recent pa-

per are similar to ispc in a number of ways [23]; they
were developed concurrently with ispc with some cross-
pollination of ideas. These three languages are the only
C-like general-purpose languages that we are aware of that
provide a mechanism for creating a structure-of-arrays vari-
ant of a previously-declared struct data type.

There are substantial differences in emphasis between the
VecImp/IVL paper and this work. The VecImp/IVL paper
focuses on describing the language and formally proving the
soundness of the type system, whereas we focus on justify-
ing and quantitatively evaluating language features such as
uniform variables and structure-of-arrays support. IVL and
its evaluation focus on the MIC architecture, whereas ispc

focuses on the SSE and AVX architectures which have less
dedicated ISA support for SPMD-style computation. This
paper also introduces and analyzes the compiler optimiza-
tions required to reap the full benefit of language features
such as uniform variables.

There are a variety of other detailed differences between
ispc, IVL, and VecImp. For example, IVL supports function
polymorphism, which is not currently supported in ispc,
and ispc’s pointer model is more powerful than IVL’s. ispc
uses LLVM for code generation, but the IVL compiler gen-
erates C++ code with intrinsics. ispc is the only one of the
three languages with an implementation available for public
use.

The Intel C/C++ compiler provides an “elemental func-
tions” extension of C++ that is intended to provide SPMD
as an extension of a full C++ compiler [16]. Its language
functionality for SPMD is more limited than ispc’s; for ex-
ample its equivalent of uniform can only be applied to func-
tion parameters and there is no general facility for creating
SOA types from AOS types. It has been demonstrated that
its capabilities can be used to achieve good utilization of
SIMD units [20].

9. CONCLUSION
We have presented ispc, a SPMD language for program-

ming CPU vector units that is easy to adopt and productive
to use. We have shown that a few key language features–
uniform data types, native support for SOA structure layout,
and in-language task launch–coupled with a series of custom
optimization passes make it possible to efficiently execute
SPMD programs on the SIMD hardware of modern CPUs.
These programs can effectively target the full capabilities
of CPUs, executing code with performance essentially the
same as hand-written intrinsics. Support for uniform types
is particularly important; our experiments showed that this
capability provides over a 2x performance improvement.

In the future, we plan to further refine the ispc language,
eliminating remaining differences with C and adding conve-
nience features like polymorphic functions. We are already
adding support for the MIC architecture, which is an attrac-
tive target due to its 16-wide SIMD and good ISA support
for SPMD execution.

Experience with ispc suggests a number of avenues for
improving future hardware architectures. For conventional
CPUs, improved support for masking and scatter would be
desirable, and extending vector units to operate on 64-bit
integer values at the same performance as when operating

on 32-bit integer values (for vector pointer addressing cal-
culations) may be helpful.

The decision to include both scalar and SIMD computa-
tion as first-class operations in the language may be applica-
ble to other architectures. For example, AMD’s forthcoming
GPU has a scalar unit alongside its vector unit [27] as does a
research architecture from NVIDIA [18]. Such architectures
could have a variety of efficiency advantages versus a tra-
ditional “brute force” SIMD-only GPU implementation [6].
More broadly, many of the available approaches for achiev-
ing high SIMD efficiency can be implemented in different
ways: by the programmer/language, by the compiler, or by
the hardware. In the power-constrained environment that
limits all hardware architectures today, we expect continued
exploration of the complex trade offs between these different
approaches.
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